Como as células sabem quando parar? Através de telômeros, tampas de compostos de seqüências repetitivas de DNA nas extremidades dos cromossomos. Estes funcionam um pouco como os aglets nas extremidades dos cadarços que os impedem de se desfazendo. Através de uma peculiaridade na replicação do DNA, cada vez que uma célula se divide, as suas células filhas perder um pouquinho de seus telômeros. Uma vez que os telômeros se foram, a célula pára de se dividir e se torna senescente.
Dois tipos de células não sofrem deste problema. Uma delas é que as células germinativas que são os progenitores de esperma e óvulos. Seus telómeros são restauradas por uma enzima chamada telomerase, tornando-os essencialmente imortal. O outro grupo é células cancerosas. Eles podem dividir sem limite, que é o que os torna tão mortal.
Envelhecimento significativa é um fenômeno relativamente novo. Ao longo da história evolucionária, uma vez que as criaturas começaram a vacilar de forma alguma, eles foram comidos ou caiu morto de doença - comido por bactérias, por assim dizer - para que eles nunca tiveram a chance de envelhecer. "Assim como um animal na selva começa a desacelerar até mesmo um pouco, é eliminado da população muito rapidamente", diz Simon Melov, um pesquisador do Instituto Buck, uma organização sem fins lucrativos dedicada à pesquisa de envelhecimento. "O envelhecimento não é um estado natural para nós também", acrescenta. "A evidência que temos indica que 10.000 a 20.000 anos atrás, a maioria das pessoas não viviam muito além de 30." Hoje, as únicas criaturas que realmente sofrem de envelhecimento são seres humanos e os animais que protegem, como animais de estimação e gado. As Raízes do envelhecimento Mas o que é o envelhecimento, afinal? Todos nós sabemos que quando a vemos, mas é muito difícil de provocar o envelhecimento em si das várias doenças que a acompanham. Michael linha reta, um ex-editor do The New Republic, foi perguntado quando ele tinha 80 anos o que se sentia ser um homem velho. Hetero respondeu: "Eu me sinto como um jovem que tem alguma coisa muito ruim de errado com ele." Na linguagem da gerontologia, não há bons biomarcadores para o envelhecimento.
Ainda hoje, muitas coisas além do envelhecimento matar pessoas - principalmente, doenças e acidentes. Então, novamente, à medida que envelhecemos nos tornamos cada vez mais vulneráveis aos choques e doenças que podem nos matar. Nas sociedades modernas, a doença desempenha um papel relativamente pequeno em matar pessoas mais jovens: Se todas as causas de morte nos Estados Unidos antes dos 50 anos foram eliminadas, a expectativa média de vida aumentaria em apenas três anos e meio. Enquanto isso, Jay Olshansky estimou que, se todas as mortes por doenças cardíacas, câncer e derrame foram eliminados totalmente a esperança média de vida nos Estados Unidos aumentaria para entre 90 e 95. No século 19, o atuário seguro Benjamin Gompertz apontou que, como pessoas de idade, a chance de morrer duplica a cada oito anos. Assim, a 35-year-old é duas vezes mais probabilidade de morrer, aos 43 anos e quatro vezes mais probabilidade de morrer aos 51 anos.
Existe um limite máximo para o tempo de vida humano? Os pesquisadores relataram, em 29 de abril de Ciência que a esperança de vida tem vindo a aumentar em cerca de dois anos e meio por década nos últimos 160 anos. Os demógrafos como Olshansky, segundo eles, têm sido consistentemente errado na previsão de um limite superior para a expectativa de vida humana. Em 1928, por exemplo, o demógrafo Louis Dublin previu que a esperança média de vida nos Estados Unidos nunca exceder 64,75 anos. Hoje, é de 76,7.
A este ritmo de melhora, os autores do relatório concluem Ciência, "record [média] expectativa de vida vai chegar a cerca de 100 em seis décadas." Ainda assim, tanto quanto sabemos, a vida humana máxima é de 122 anos os alcançados pela mulher francesa cigarro fumadores Jeanne Calment, que morreu em 1997. O envelhecimento é acompanhado por muitas mudanças simultâneas - cabelo grisalho, enfraquecimento dos ossos, músculos, enfraquecendo o sistema imunológico falha. Até o momento, os pesquisadores ainda não descobri se essas mudanças são o envelhecimento em si ou apenas sintomas de algum processo mais geral de decadência.
Os cientistas agora estão em amplo acordo de que o envelhecimento em grande parte pode ser atribuída aos danos causados às nossas células pelos radicais livres. Um radical livre é um átomo ou molécula que tem pelo menos um electrão não emparelhado, fazendo com que seja muito reactivo quimicamente. Muitos dos radicais livres são criados em células à medida que produzem energia. Os radicais livres perturbar DNA de uma célula e síntese de proteínas e mecanismos de reparo. O biólogo Berkeley Bruce Ames calculou que os radicais de oxigénio danificam o ADN no interior de cada célula de cerca de 10.000 vezes por dia.
Cada vez que uma célula se replica, todos os bilhões de pares de bases de DNA que compõem seu genoma copia. As células são lugares muito lotados e quimicamente energéticos, de modo que ocorre miscopying às vezes. Felizmente, a evolução criou máquinas moleculares que podem ler-se rapidamente e, em seguida, corrigir a maioria dos erros de cópia, mantendo as células a uma taxa incrivelmente precisas de um erro por bilhão repetições de nucleotídeos. No entanto, cada vez que os mecanismos de reparo perca um erro, torna-se codificada no DNA - e da próxima vez que a duplicação ocorre, o DNA miscopied é tratada como correta. Como resultado, os erros acumulam ao longo do tempo. Genes Miscopied levam à produção de proteínas distorcidas, que são ineficientes quando funcionar. O dano molecular acumulado provoca uma queda de 0,5 por cento por ano de capacidade física geral após os 30 anos.
Cada vez mais, os pesquisadores estão concentrando sua atenção sobre os danos radicais livres causam nas minúsculas organelas produtoras de energia chamadas mitocôndrias. Como qualquer outra usina, as mitocôndrias produzem não apenas energia, mas também de resíduos e poluição, incluindo os radicais livres copiosas. Tão bom quanto as mitocôndrias são a esfregar os para cima, alguns deles, no entanto, se soltar e danificar os minúsculos genomas de DNA no coração da mitocôndria. Os radicais livres criar uma espiral de morte celular através da mutação do ADN mitocondrial, o que, por sua vez degrada a sua produção de energia e aumenta a produção de radicais livres, o ciclo de reabastecimento.
Outros pontos de pesquisa para outro processo que liga os radicais livres ao envelhecimento. Aparentemente, estamos literalmente cozinhar nós mesmos até a morte. Na culinária, os açúcares e as proteínas se unem para formar crostas marrons saborosos como aqueles em torradas. Nossos próprios metabolismos são uma forma de cozinhar a baixa temperatura que faz com que os açúcares pegajosos como a glicose para reticular com proteínas para criar produtos de glicação avançada (AGEs). AGEs são lixo biológico que se acumula nas células, o que interfere com as suas funções ao longo do tempo. Por exemplo, os AGEs reduzir a elasticidade e flexibilidade do colagénio nos ligamentos. Eles também estão ligados ao diabetes e doença cardiovascular.
Em um processo relacionado, centros de reciclagem de nossos células, chamadas lisossomos, tornam-se obstruídos com proteínas de ligações cruzadas e outros tipos de lixo celular. Este lamaçal celular é chamado de lipofuscina. Lisossomos cheio de lipofuscina lentamente multidão e impedir outras funções celulares.
Outro processo envolvendo radicais livres é a inflamação. A inflamação ocorre quando as nossas células do sistema imunológico encharcar invasores, como bactérias e vírus com os radicais livres para rasgá-los separados. O problema é que às vezes os ataques inflamatórios não catraca para baixo quando a ameaça se foi, e as nossas células imunes continuar a bombear para fora os radicais livres. A inflamação crónica tem sido associada a muitas doenças associadas com o envelhecimento, incluindo a artrite, aterosclerose, diabetes, doença de Alzheimer, e cancro.
Sua contribuição será usada para melhorar a qualidade da tradução e poderá ser exibida anonimamente a outros usuários.
Enviar
Fechar
Agradecemos o envio.
Definições de How do cells know when to stop? Through telomeres, caps composed of repetitive DNA sequences at the ends of chromosomes. These function somewhat like the aglets on the ends of shoelaces that keep them from unraveling. Through a peculiarity in DNA replication, each time a cell divides, its daughter cells lose a tiny bit of their telomeres. Once the telomeres are gone, the cell stops dividing and becomes senescent. Two types of cells do not suffer this problem. One is the germ cells that are the progenitors of sperm and eggs. Their telomeres are restored by an enzyme called telomerase, making them essentially immortal. The other group is cancer cells. They can divide without limit, which is what makes them so deadly. Significant aging is a relatively new phenomenon. Over evolutionary history, once creatures began to falter in any way, they were eaten or dropped dead of disease -- eaten by bacteria, as it were -- so they never had a chance to get old. "As soon as an animal in the wild starts to slow down even a little bit, it's eliminated from the population very quickly," says Simon Melov, a researcher at the Buck Institute, a nonprofit organization devoted to aging research. "Aging is not a natural state for us either," he adds. "The evidence we have indicates that 10,000 to 20,000 years ago, most people didn't live much past 30." Today, the only creatures that actually experience aging are human beings and the animals they protect, such as pets and livestock. The Roots of Aging But what is aging, anyway? We all know it when we see it, but it's very hard to tease aging itself from the various diseases that accompany it. Michael Straight, a former editor of The New Republic, was asked when he was 80 what it felt like to be an old man. Straight replied, "I feel like a young man who's got something very bad wrong with him." In the language of gerontology, there are no good biomarkers for aging. Even today, many things besides aging kill people -- primarily, diseases and accidents. Then again, as we age we become increasingly vulnerable to the shocks and diseases that can kill us. In modern societies, disease plays a relatively small role in killing off younger people: If all the causes of death in the United States before age 50 were eliminated, average life expectancy would increase by only three and a half years. Meanwhile, Jay Olshansky has estimated that if all deaths from heart disease, cancer, and stroke were eliminated entirely the average life expectancy in the United States would increase to between 90 and 95. In the 19th century the insurance actuary Benjamin Gompertz pointed out that as people age, their chance of dying doubles every eight years or so. Thus, a 35-year-old is twice as likely to die at age 43 and four times as likely to die at age 51. Is there an upper limit on human lifespans? Researchers reported in the April 29 Science that life expectancy has been increasing at about two and a half years per decade for the last 160 years. Demographers like Olshansky, they note, have been consistently wrong in predicting an upper limit to human life expectancy. In 1928, for example, the demographer Louis Dublin predicted that average life expectancy in the United States would never exceed 64.75 years. Today it is 76.7. At this rate of improvement, the authors of the Science report conclude, "record [average] life expectancy will reach about 100 in six decades." Still, as far as we know, the maximum human life span is the 122 years achieved by the cigarette-smoking French woman Jeanne Calment, who died in 1997. Aging is accompanied by lots of simultaneous changes -- graying hair, thinning bones, weakening muscles, failing immune systems. So far, researchers have not figured out whether those changes are aging itself or just symptoms of some more general process of decay. Scientists are now in wide agreement that aging can largely be traced to the damage done to our cells by free radicals. A free radical is an atom or molecule that has at least one unpaired electron, causing it to be very chemically reactive. Lots of free radicals are created in cells as they produce energy. Free radicals disrupt a cell's DNA and protein synthesis and repair mechanisms. The Berkeley biologist Bruce Ames has calculated that oxygen radicals damage the DNA inside each cell some 10,000 times per day. Each time a cell replicates, it copies all of the billions of DNA base pairs that comprise its genome. Cells are very crowded and chemically energetic places, so miscopying sometimes occurs. Fortunately, evolution has devised molecular machines that can rapidly read and then correct most of the copying mistakes, keeping the cells to a fantastically accurate rate of one error per billion nucleotide replications. However, each time the repair mechanisms miss a mistake, it becomes encoded in the DNA -- and the next time duplication occurs, the miscopied DNA is treated as correct. As a result, errors accumulate over time. Miscopied genes lead to the production of distorted proteins, which are inefficient when they work at all. The accumulated molecular damage causes a 0.5 percent decline per year in overall physical capacity after age 30. Increasingly, researchers are focusing their attention on the damage free radicals cause in the tiny energy-producing organelles called mitochondria. Like any other power plant, mitochondria produce not just energy but also wastes and pollution, including copious free radicals. As good as mitochondria are at mopping these up, some of them nevertheless get loose and damage the tiny DNA genomes at the heart of the mitochondria. Free radicals create a cellular death spiral by mutating mitochondrial DNA, which in turn degrades their energy production and increases the production of free radicals, refueling the cycle. Other research points to another process linking free radicals to aging. Apparently, we are literally cooking ourselves to death. In cooking, sugars and proteins stick together to form tasty brown crusts like those on French toast. Our own metabolisms are a form of low-temperature cooking that causes sticky sugars such as glucose to cross-link with proteins to create advanced glycation end products (AGEs). AGEs are biological junk that accumulates in cells, interfering with their functions over time. For example, AGEs reduce the elasticity and flexibility of the collagen in our ligaments. They are also linked to diabetes and to cardiovascular disease. In a related process, our cells' recycling centers, called lysosomes, become clogged with cross-linked proteins and other cellular rubbish. This cellular gunk is called lipofuscin. Lipofuscin-filled lysosomes slowly crowd and hinder other cellular functions. Another process involving free radicals is inflammation. Inflammation occurs when our immune system cells drench invaders such as bacteria and viruses with free radicals to rip them apart. The problem is that sometimes the inflammatory attacks don't ratchet down when the threat is gone, and our immune cells keep pumping out free radicals. Chronic inflammation has been linked to many diseases associated with aging, including arthritis, atherosclerosis, diabetes, Alzheimer's, and cancer.
Sinônimos de How do cells know when to stop? Through telomeres, caps composed of repetitive DNA sequences at the ends of chromosomes. These function somewhat like the aglets on the ends of shoelaces that keep them from unraveling. Through a peculiarity in DNA replication, each time a cell divides, its daughter cells lose a tiny bit of their telomeres. Once the telomeres are gone, the cell stops dividing and becomes senescent. Two types of cells do not suffer this problem. One is the germ cells that are the progenitors of sperm and eggs. Their telomeres are restored by an enzyme called telomerase, making them essentially immortal. The other group is cancer cells. They can divide without limit, which is what makes them so deadly. Significant aging is a relatively new phenomenon. Over evolutionary history, once creatures began to falter in any way, they were eaten or dropped dead of disease -- eaten by bacteria, as it were -- so they never had a chance to get old. "As soon as an animal in the wild starts to slow down even a little bit, it's eliminated from the population very quickly," says Simon Melov, a researcher at the Buck Institute, a nonprofit organization devoted to aging research. "Aging is not a natural state for us either," he adds. "The evidence we have indicates that 10,000 to 20,000 years ago, most people didn't live much past 30." Today, the only creatures that actually experience aging are human beings and the animals they protect, such as pets and livestock. The Roots of Aging But what is aging, anyway? We all know it when we see it, but it's very hard to tease aging itself from the various diseases that accompany it. Michael Straight, a former editor of The New Republic, was asked when he was 80 what it felt like to be an old man. Straight replied, "I feel like a young man who's got something very bad wrong with him." In the language of gerontology, there are no good biomarkers for aging. Even today, many things besides aging kill people -- primarily, diseases and accidents. Then again, as we age we become increasingly vulnerable to the shocks and diseases that can kill us. In modern societies, disease plays a relatively small role in killing off younger people: If all the causes of death in the United States before age 50 were eliminated, average life expectancy would increase by only three and a half years. Meanwhile, Jay Olshansky has estimated that if all deaths from heart disease, cancer, and stroke were eliminated entirely the average life expectancy in the United States would increase to between 90 and 95. In the 19th century the insurance actuary Benjamin Gompertz pointed out that as people age, their chance of dying doubles every eight years or so. Thus, a 35-year-old is twice as likely to die at age 43 and four times as likely to die at age 51. Is there an upper limit on human lifespans? Researchers reported in the April 29 Science that life expectancy has been increasing at about two and a half years per decade for the last 160 years. Demographers like Olshansky, they note, have been consistently wrong in predicting an upper limit to human life expectancy. In 1928, for example, the demographer Louis Dublin predicted that average life expectancy in the United States would never exceed 64.75 years. Today it is 76.7. At this rate of improvement, the authors of the Science report conclude, "record [average] life expectancy will reach about 100 in six decades." Still, as far as we know, the maximum human life span is the 122 years achieved by the cigarette-smoking French woman Jeanne Calment, who died in 1997. Aging is accompanied by lots of simultaneous changes -- graying hair, thinning bones, weakening muscles, failing immune systems. So far, researchers have not figured out whether those changes are aging itself or just symptoms of some more general process of decay. Scientists are now in wide agreement that aging can largely be traced to the damage done to our cells by free radicals. A free radical is an atom or molecule that has at least one unpaired electron, causing it to be very chemically reactive. Lots of free radicals are created in cells as they produce energy. Free radicals disrupt a cell's DNA and protein synthesis and repair mechanisms. The Berkeley biologist Bruce Ames has calculated that oxygen radicals damage the DNA inside each cell some 10,000 times per day. Each time a cell replicates, it copies all of the billions of DNA base pairs that comprise its genome. Cells are very crowded and chemically energetic places, so miscopying sometimes occurs. Fortunately, evolution has devised molecular machines that can rapidly read and then correct most of the copying mistakes, keeping the cells to a fantastically accurate rate of one error per billion nucleotide replications. However, each time the repair mechanisms miss a mistake, it becomes encoded in the DNA -- and the next time duplication occurs, the miscopied DNA is treated as correct. As a result, errors accumulate over time. Miscopied genes lead to the production of distorted proteins, which are inefficient when they work at all. The accumulated molecular damage causes a 0.5 percent decline per year in overall physical capacity after age 30. Increasingly, researchers are focusing their attention on the damage free radicals cause in the tiny energy-producing organelles called mitochondria. Like any other power plant, mitochondria produce not just energy but also wastes and pollution, including copious free radicals. As good as mitochondria are at mopping these up, some of them nevertheless get loose and damage the tiny DNA genomes at the heart of the mitochondria. Free radicals create a cellular death spiral by mutating mitochondrial DNA, which in turn degrades their energy production and increases the production of free radicals, refueling the cycle. Other research points to another process linking free radicals to aging. Apparently, we are literally cooking ourselves to death. In cooking, sugars and proteins stick together to form tasty brown crusts like those on French toast. Our own metabolisms are a form of low-temperature cooking that causes sticky sugars such as glucose to cross-link with proteins to create advanced glycation end products (AGEs). AGEs are biological junk that accumulates in cells, interfering with their functions over time. For example, AGEs reduce the elasticity and flexibility of the collagen in our ligaments. They are also linked to diabetes and to cardiovascular disease. In a related process, our cells' recycling centers, called lysosomes, become clogged with cross-linked proteins and other cellular rubbish. This cellular gunk is called lipofuscin. Lipofuscin-filled lysosomes slowly crowd and hinder other cellular functions. Another process involving free radicals is inflammation. Inflammation occurs when our immune system cells drench invaders such as bacteria and viruses with free radicals to rip them apart. The problem is that sometimes the inflammatory attacks don't ratchet down when the threat is gone, and our immune cells keep pumping out free radicals. Chronic inflammation has been linked to many diseases associated with aging, including arthritis, atherosclerosis, diabetes, Alzheimer's, and cancer.
Exemplos de How do cells know when to stop? Through telomeres, caps composed of repetitive DNA sequences at the ends of chromosomes. These function somewhat like the aglets on the ends of shoelaces that keep them from unraveling. Through a peculiarity in DNA replication, each time a cell divides, its daughter cells lose a tiny bit of their telomeres. Once the telomeres are gone, the cell stops dividing and becomes senescent. Two types of cells do not suffer this problem. One is the germ cells that are the progenitors of sperm and eggs. Their telomeres are restored by an enzyme called telomerase, making them essentially immortal. The other group is cancer cells. They can divide without limit, which is what makes them so deadly. Significant aging is a relatively new phenomenon. Over evolutionary history, once creatures began to falter in any way, they were eaten or dropped dead of disease -- eaten by bacteria, as it were -- so they never had a chance to get old. "As soon as an animal in the wild starts to slow down even a little bit, it's eliminated from the population very quickly," says Simon Melov, a researcher at the Buck Institute, a nonprofit organization devoted to aging research. "Aging is not a natural state for us either," he adds. "The evidence we have indicates that 10,000 to 20,000 years ago, most people didn't live much past 30." Today, the only creatures that actually experience aging are human beings and the animals they protect, such as pets and livestock. The Roots of Aging But what is aging, anyway? We all know it when we see it, but it's very hard to tease aging itself from the various diseases that accompany it. Michael Straight, a former editor of The New Republic, was asked when he was 80 what it felt like to be an old man. Straight replied, "I feel like a young man who's got something very bad wrong with him." In the language of gerontology, there are no good biomarkers for aging. Even today, many things besides aging kill people -- primarily, diseases and accidents. Then again, as we age we become increasingly vulnerable to the shocks and diseases that can kill us. In modern societies, disease plays a relatively small role in killing off younger people: If all the causes of death in the United States before age 50 were eliminated, average life expectancy would increase by only three and a half years. Meanwhile, Jay Olshansky has estimated that if all deaths from heart disease, cancer, and stroke were eliminated entirely the average life expectancy in the United States would increase to between 90 and 95. In the 19th century the insurance actuary Benjamin Gompertz pointed out that as people age, their chance of dying doubles every eight years or so. Thus, a 35-year-old is twice as likely to die at age 43 and four times as likely to die at age 51. Is there an upper limit on human lifespans? Researchers reported in the April 29 Science that life expectancy has been increasing at about two and a half years per decade for the last 160 years. Demographers like Olshansky, they note, have been consistently wrong in predicting an upper limit to human life expectancy. In 1928, for example, the demographer Louis Dublin predicted that average life expectancy in the United States would never exceed 64.75 years. Today it is 76.7. At this rate of improvement, the authors of the Science report conclude, "record [average] life expectancy will reach about 100 in six decades." Still, as far as we know, the maximum human life span is the 122 years achieved by the cigarette-smoking French woman Jeanne Calment, who died in 1997. Aging is accompanied by lots of simultaneous changes -- graying hair, thinning bones, weakening muscles, failing immune systems. So far, researchers have not figured out whether those changes are aging itself or just symptoms of some more general process of decay. Scientists are now in wide agreement that aging can largely be traced to the damage done to our cells by free radicals. A free radical is an atom or molecule that has at least one unpaired electron, causing it to be very chemically reactive. Lots of free radicals are created in cells as they produce energy. Free radicals disrupt a cell's DNA and protein synthesis and repair mechanisms. The Berkeley biologist Bruce Ames has calculated that oxygen radicals damage the DNA inside each cell some 10,000 times per day. Each time a cell replicates, it copies all of the billions of DNA base pairs that comprise its genome. Cells are very crowded and chemically energetic places, so miscopying sometimes occurs. Fortunately, evolution has devised molecular machines that can rapidly read and then correct most of the copying mistakes, keeping the cells to a fantastically accurate rate of one error per billion nucleotide replications. However, each time the repair mechanisms miss a mistake, it becomes encoded in the DNA -- and the next time duplication occurs, the miscopied DNA is treated as correct. As a result, errors accumulate over time. Miscopied genes lead to the production of distorted proteins, which are inefficient when they work at all. The accumulated molecular damage causes a 0.5 percent decline per year in overall physical capacity after age 30. Increasingly, researchers are focusing their attention on the damage free radicals cause in the tiny energy-producing organelles called mitochondria. Like any other power plant, mitochondria produce not just energy but also wastes and pollution, including copious free radicals. As good as mitochondria are at mopping these up, some of them nevertheless get loose and damage the tiny DNA genomes at the heart of the mitochondria. Free radicals create a cellular death spiral by mutating mitochondrial DNA, which in turn degrades their energy production and increases the production of free radicals, refueling the cycle. Other research points to another process linking free radicals to aging. Apparently, we are literally cooking ourselves to death. In cooking, sugars and proteins stick together to form tasty brown crusts like those on French toast. Our own metabolisms are a form of low-temperature cooking that causes sticky sugars such as glucose to cross-link with proteins to create advanced glycation end products (AGEs). AGEs are biological junk that accumulates in cells, interfering with their functions over time. For example, AGEs reduce the elasticity and flexibility of the collagen in our ligaments. They are also linked to diabetes and to cardiovascular disease. In a related process, our cells' recycling centers, called lysosomes, become clogged with cross-linked proteins and other cellular rubbish. This cellular gunk is called lipofuscin. Lipofuscin-filled lysosomes slowly crowd and hinder other cellular functions. Another process involving free radicals is inflammation. Inflammation occurs when our immune system cells drench invaders such as bacteria and viruses with free radicals to rip them apart. The problem is that sometimes the inflammatory attacks don't ratchet down when the threat is gone, and our immune cells keep pumping out free radicals. Chronic inflammation has been linked to many diseases associated with aging, including arthritis, atherosclerosis, diabetes, Alzheimer's, and cancer.
See also
Traduções de How do cells know when to stop? Through telomeres, caps composed of repetitive DNA sequences at the ends of chromosomes. These function somewhat like the aglets on the ends of shoelaces that keep them from unraveling. Through a peculiarity in DNA replication, each time a cell divides, its daughter cells lose a tiny bit of their telomeres. Once the telomeres are gone, the cell stops dividing and becomes senescent. Two types of cells do not suffer this problem. One is the germ cells that are the progenitors of sperm and eggs. Their telomeres are restored by an enzyme called telomerase, making them essentially immortal. The other group is cancer cells. They can divide without limit, which is what makes them so deadly. Significant aging is a relatively new phenomenon. Over evolutionary history, once creatures began to falter in any way, they were eaten or dropped dead of disease -- eaten by bacteria, as it were -- so they never had a chance to get old. "As soon as an animal in the wild starts to slow down even a little bit, it's eliminated from the population very quickly," says Simon Melov, a researcher at the Buck Institute, a nonprofit organization devoted to aging research. "Aging is not a natural state for us either," he adds. "The evidence we have indicates that 10,000 to 20,000 years ago, most people didn't live much past 30." Today, the only creatures that actually experience aging are human beings and the animals they protect, such as pets and livestock. The Roots of Aging But what is aging, anyway? We all know it when we see it, but it's very hard to tease aging itself from the various diseases that accompany it. Michael Straight, a former editor of The New Republic, was asked when he was 80 what it felt like to be an old man. Straight replied, "I feel like a young man who's got something very bad wrong with him." In the language of gerontology, there are no good biomarkers for aging. Even today, many things besides aging kill people -- primarily, diseases and accidents. Then again, as we age we become increasingly vulnerable to the shocks and diseases that can kill us. In modern societies, disease plays a relatively small role in killing off younger people: If all the causes of death in the United States before age 50 were eliminated, average life expectancy would increase by only three and a half years. Meanwhile, Jay Olshansky has estimated that if all deaths from heart disease, cancer, and stroke were eliminated entirely the average life expectancy in the United States would increase to between 90 and 95. In the 19th century the insurance actuary Benjamin Gompertz pointed out that as people age, their chance of dying doubles every eight years or so. Thus, a 35-year-old is twice as likely to die at age 43 and four times as likely to die at age 51. Is there an upper limit on human lifespans? Researchers reported in the April 29 Science that life expectancy has been increasing at about two and a half years per decade for the last 160 years. Demographers like Olshansky, they note, have been consistently wrong in predicting an upper limit to human life expectancy. In 1928, for example, the demographer Louis Dublin predicted that average life expectancy in the United States would never exceed 64.75 years. Today it is 76.7. At this rate of improvement, the authors of the Science report conclude, "record [average] life expectancy will reach about 100 in six decades." Still, as far as we know, the maximum human life span is the 122 years achieved by the cigarette-smoking French woman Jeanne Calment, who died in 1997. Aging is accompanied by lots of simultaneous changes -- graying hair, thinning bones, weakening muscles, failing immune systems. So far, researchers have not figured out whether those changes are aging itself or just symptoms of some more general process of decay. Scientists are now in wide agreement that aging can largely be traced to the damage done to our cells by free radicals. A free radical is an atom or molecule that has at least one unpaired electron, causing it to be very chemically reactive. Lots of free radicals are created in cells as they produce energy. Free radicals disrupt a cell's DNA and protein synthesis and repair mechanisms. The Berkeley biologist Bruce Ames has calculated that oxygen radicals damage the DNA inside each cell some 10,000 times per day. Each time a cell replicates, it copies all of the billions of DNA base pairs that comprise its genome. Cells are very crowded and chemically energetic places, so miscopying sometimes occurs. Fortunately, evolution has devised molecular machines that can rapidly read and then correct most of the copying mistakes, keeping the cells to a fantastically accurate rate of one error per billion nucleotide replications. However, each time the repair mechanisms miss a mistake, it becomes encoded in the DNA -- and the next time duplication occurs, the miscopied DNA is treated as correct. As a result, errors accumulate over time. Miscopied genes lead to the production of distorted proteins, which are inefficient when they work at all. The accumulated molecular damage causes a 0.5 percent decline per year in overall physical capacity after age 30. Increasingly, researchers are focusing their attention on the damage free radicals cause in the tiny energy-producing organelles called mitochondria. Like any other power plant, mitochondria produce not just energy but also wastes and pollution, including copious free radicals. As good as mitochondria are at mopping these up, some of them nevertheless get loose and damage the tiny DNA genomes at the heart of the mitochondria. Free radicals create a cellular death spiral by mutating mitochondrial DNA, which in turn degrades their energy production and increases the production of free radicals, refueling the cycle. Other research points to another process linking free radicals to aging. Apparently, we are literally cooking ourselves to death. In cooking, sugars and proteins stick together to form tasty brown crusts like those on French toast. Our own metabolisms are a form of low-temperature cooking that causes sticky sugars such as glucose to cross-link with proteins to create advanced glycation end products (AGEs). AGEs are biological junk that accumulates in cells, interfering with their functions over time. For example, AGEs reduce the elasticity and flexibility of the collagen in our ligaments. They are also linked to diabetes and to cardiovascular disease. In a related process, our cells' recycling centers, called lysosomes, become clogged with cross-linked proteins and other cellular rubbish. This cellular gunk is called lipofuscin. Lipofuscin-filled lysosomes slowly crowd and hinder other cellular functions. Another process involving free radicals is inflammation. Inflammation occurs when our immune system cells drench invaders such as bacteria and viruses with free radicals to rip them apart. The problem is that sometimes the inflammatory attacks don't ratchet down when the threat is gone, and our immune cells keep pumping out free radicals. Chronic inflammation has been linked to many diseases associated with aging, including arthritis, atherosclerosis, diabetes, Alzheimer's, and cancer.
How do cells know when to stop? Through telomeres, caps composed of repetitive DNA sequences at the ends of chromosomes. These function somewhat like the aglets on the ends of shoelaces that keep them from unraveling. Through a peculiarity in DNA replication, each time a cell divides, its daughter cells lose a tiny bit of their telomeres. Once the telomeres are gone, the cell stops dividing and becomes senescent.
Two types of cells do not suffer this problem. One is the germ cells that are the progenitors of sperm and eggs. Their telomeres are restored by an enzyme called telomerase, making them essentially immortal. The other group is cancer cells. They can divide without limit, which is what makes them so deadly.
Significant aging is a relatively new phenomenon. Over evolutionary history, once creatures began to falter in any way, they were eaten or dropped dead of disease -- eaten by bacteria, as it were -- so they never had a chance to get old. "As soon as an animal in the wild starts to slow down even a little bit, it's eliminated from the population very quickly," says Simon Melov, a researcher at the Buck Institute, a nonprofit organization devoted to aging research. "Aging is not a natural state for us either," he adds. "The evidence we have indicates that 10,000 to 20,000 years ago, most people didn't live much past 30." Today, the only creatures that actually experience aging are human beings and the animals they protect, such as pets and livestock.
The Roots of Aging
But what is aging, anyway? We all know it when we see it, but it's very hard to tease aging itself from the various diseases that accompany it. Michael Straight, a former editor of The New Republic, was asked when he was 80 what it felt like to be an old man. Straight replied, "I feel like a young man who's got something very bad wrong with him." In the language of gerontology, there are no good biomarkers for aging.
Even today, many things besides aging kill people -- primarily, diseases and accidents. Then again, as we age we become increasingly vulnerable to the shocks and diseases that can kill us. In modern societies, disease plays a relatively small role in killing off younger people: If all the causes of death in the United States before age 50 were eliminated, average life expectancy would increase by only three and a half years. Meanwhile, Jay Olshansky has estimated that if all deaths from heart disease, cancer, and stroke were eliminated entirely the average life expectancy in the United States would increase to between 90 and 95. In the 19th century the insurance actuary Benjamin Gompertz pointed out that as people age, their chance of dying doubles every eight years or so. Thus, a 35-year-old is twice as likely to die at age 43 and four times as likely to die at age 51.
Is there an upper limit on human lifespans? Researchers reported in the April 29 Science that life expectancy has been increasing at about two and a half years per decade for the last 160 years. Demographers like Olshansky, they note, have been consistently wrong in predicting an upper limit to human life expectancy. In 1928, for example, the demographer Louis Dublin predicted that average life expectancy in the United States would never exceed 64.75 years. Today it is 76.7.
At this rate of improvement, the authors of the Science report conclude, "record [average] life expectancy will reach about 100 in six decades." Still, as far as we know, the maximum human life span is the 122 years achieved by the cigarette-smoking French woman Jeanne Calment, who died in 1997.
Aging is accompanied by lots of simultaneous changes -- graying hair, thinning bones, weakening muscles, failing immune systems. So far, researchers have not figured out whether those changes are aging itself or just symptoms of some more general process of decay.
Scientists are now in wide agreement that aging can largely be traced to the damage done to our cells by free radicals. A free radical is an atom or molecule that has at least one unpaired electron, causing it to be very chemically reactive. Lots of free radicals are created in cells as they produce energy. Free radicals disrupt a cell's DNA and protein synthesis and repair mechanisms. The Berkeley biologist Bruce Ames has calculated that oxygen radicals damage the DNA inside each cell some 10,000 times per day.
Each time a cell replicates, it copies all of the billions of DNA base pairs that comprise its genome. Cells are very crowded and chemically energetic places, so miscopying sometimes occurs. Fortunately, evolution has devised molecular machines that can rapidly read and then correct most of the copying mistakes, keeping the cells to a fantastically accurate rate of one error per billion nucleotide replications. However, each time the repair mechanisms miss a mistake, it becomes encoded in the DNA -- and the next time duplication occurs, the miscopied DNA is treated as correct. As a result, errors accumulate over time. Miscopied genes lead to the production of distorted proteins, which are inefficient when they work at all. The accumulated molecular damage causes a 0.5 percent decline per year in overall physical capacity after age 30.
Increasingly, researchers are focusing their attention on the damage free radicals cause in the tiny energy-producing organelles called mitochondria. Like any other power plant, mitochondria produce not just energy but also wastes and pollution, including copious free radicals. As good as mitochondria are at mopping these up, some of them nevertheless get loose and damage the tiny DNA genomes at the heart of the mitochondria. Free radicals create a cellular death spiral by mutating mitochondrial DNA, which in turn degrades their energy production and increases the production of free radicals, refueling the cycle.
Other research points to another process linking free radicals to aging. Apparently, we are literally cooking ourselves to death. In cooking, sugars and proteins stick together to form tasty brown crusts like those on French toast. Our own metabolisms are a form of low-temperature cooking that causes sticky sugars such as glucose to cross-link with proteins to create advanced glycation end products (AGEs). AGEs are biological junk that accumulates in cells, interfering with their functions over time. For example, AGEs reduce the elasticity and flexibility of the collagen in our ligaments. They are also linked to diabetes and to cardiovascular disease.
In a related process, our cells' recycling centers, called lysosomes, become clogged with cross-linked proteins and other cellular rubbish. This cellular gunk is called lipofuscin. Lipofuscin-filled lysosomes slowly crowd and hinder other cellular functions.
Another process involving free radicals is inflammation. Inflammation occurs when our immune system cells drench invaders such as bacteria and viruses with free radicals to rip them apart. The problem is that sometimes the inflammatory attacks don't ratchet down when the threat is gone, and our immune cells keep pumping out free radicals. Chronic inflammation has been linked to many diseases associated with aging, including arthritis, atherosclerosis, diabetes, Alzheimer's, and cancer.
Comentários
Postar um comentário